ASERAL

RUFF

An extremely tast
Python Llinter,
written in Rust.

VERSION: v0.0.292

HHHHHHHHHHHH

What is Ruff?

* “An extremely fast Python linter written in Rust”

 Used by... Amazon, Apache Airflow, Databricks, FastAPI, Hugging Face,
Jupyter, Microsoft, Mozilla, Mypy, Netflix, Pandas, Poetry, Polars, PyTorch,
Pydantic, Snowflake, SciPy, Zulip, pip, etc.

GitHub Stars
for selected projects

e The first tool in a toolchain

000000

ASERAL :

Ruff is (also) a formatter

-zsh

def create_decimal(self, num="0"):
"""Creates a new Decimal instance but using self as context. Benchmark 1: ./target/release/ruff format /Users/crmarsh/workspace/zulip
Time (mean * 0): 95.8 ms + 2.9 ms [User: 620.3 ms, System: 53.7 ms]
This method implements the to-number operation of the Range (min .. max): 90.9 ms .. 100.6 ms
IBM Decimal specification.”"""
Benchmark 2: BLACK_CACHE_DIR=/dev/null black /Users/crmarsh/workspace/zulip —--fast
Time (mean * 0): 3.154 s + 0.055 s [User: 23.378 s, System: 0.543 s]

Range (min .. max): 3.101 s .. 3.272 s

Benchmark 3: autopep8 /Users/crmarsh/workspace/zulip —--recursive —--in-place
Time (mean * 0): 19.601 s + 0.202 s [User: 19.252 s, System: 0.326 s]
Range (min .. max): 19.326 s .. 19.895 s

if disinstance(num, str) and (num != num.strip() or "_" din num):
return self._raise_error/(
ConversionSyntax,
"trailing or leading whitespace and " '"underscores are not permitted.",

Benchmark 4: yapf /Users/crmarsh/workspace/zulip --parallel --recursive --in-place
Time (mean *+ o): 17.755 s + 0.397 s [User: 121.918 s, System: 1.258 s]
Range (min .. max): 17.200 s .. 18.382 s]

d = Decimal(num, context=self)

if d._isnan() and len(d._int) > self.prec - self.clamp:

Summary
'./target/release/ruff format /Users/crmarsh/workspace/zulip' ran
32.92 + 1.14 times faster than 'BLACK_CACHE_DIR=/dev/null black /Users/crmarsh/workspace/zulip fast'
185.34 + 6.92 times faster than 'yapf /Users/crmarsh/workspace/zulip parallel recursive in-place'
204.61 + 6.47 times faster than 'autopep8 /Users/crmarsh/workspace/zulip recursive in-place'
ruff on ¥ main is @ v0.0.292 via & v3.11.5 via = took 14m

Y | .

return self._raise_error/(
ConversionSyntax, '"diagnostic info too long in NaN"

)
return d._fix(self)

ASERAL

What is Ruff?

* “An extremely fast Python linter written in Rust”

 Used by... Amazon, Apache Airflow, Databricks, FastAPI, Hugging Face,
Jupyter, Microsoft, Mozilla, Mypy, Netflix, Pandas, Poetry, Polars, PyTorch,
Pydantic, Snowflake, SciPy, Zulip, pip, etc.

GitHub Stars
for selected projects

e The first tool in a toolchain

000000

ASERAL :

Where did Ruff come from?

 Khan Academy (2015 - 2017)
 Web frontend (JavaScript)
 Web backend (Python)
* Android (Java)
* iOS (Objective-C, Swift)
e Spring Discovery (2018 - 2022)
 Machine learning infrastructure (Python)
e Data infrastructure (Python, Rust)
 Web frontend (TypeScript)

e Ruff (August 2022)

 Astral (March 2023) ASERAL

What is Ruff?

RASERAL

RASERAL

Why do people like Ruff?

RASERAL

Why do people like Ruff?

1. Performant: 10-1000x faster than
existing Python linters

RASERAL

Why do people like Ruff?

1. Performant: 10-1000x faster than
existing Python linters

Ruff | 0.29s

Autoflake | 6.18s
FlakeS8 NG 12.26s
Pyflakes NG 15.79s
Pycodestyle [46.92s
Pylint | > 60s
Os 20s 40s 60s

RASERAL

Why do people like Ruff?

1. Performant: 10-1000x faster than
existing Python linters

™ Nick Schrock &
87" @schrockn

4/ Why is Ruff a gamechanger? Primarily because it is nearly 1000x

faster. Literally. Not a typo. On our largest module (dagster itself, 250k
LOC) pylint takes about 2.5 minutes, parallelized across 4 cores on my

M1. Running ruff against our *entire* codebase takes .4 seconds.

8:02PM-Jan 9, 2023 - 1,702 Views

RASERAL

Why do people like Ruff?

1. Performant: 10-1000x faster than
existing Python linters

RASERAL

Why do people like Ruff?

1. Performant: 10-1000x faster than
existing Python linters

2. Unified: replace dozens of tools
with a single interface

RASERAL

Why do people like Ruff?

1. Performant: 10-1000x faster than
existing Python linters

2. Unified: replace dozens of tools
with a single interface

dlint = "~0.12.0"

flake8 = "~4.0.1"
flake8-annotations = "~2.9.0"
flake8-annotations-complexity = "~0.0.7"
flake8-bugbear = "~22.6.22"
flake8-builtins = "~1.5.3"
flake8-cognitive-complexity = "~0.1.0"
flake8-comprehensions = "~3.10.0"
flake8-debugger = "~4.1.2"
flake8-eradicate = "~1.2.0"
flake8-executable = "~2.1.1"
flake8-expression-complexity = "~0.0.10"
flake8-functions = "~0.0.7"
flake8-isort = "~4.1.1"
flake8-length = "~0.3.0"
flake8-logging-format = "~0.
flake8-no-implicit-concat =
flake8-no-pepd420 = "~2.3.0"
flake8-pie = "~0.15.0"
flake8-pytest-style = "~1.6.
flake8-quotes = "~3.3.1"
flake8-requirements = "~1.5.
flake8-return = "~1.1.3"
flake8-simplify = "~0.19.2"
flake8-tidy-imports = "~4.8.0"
flake8-todos = "~0.1.5"
flake8-type-checking = "~2.3.0"
flake8-use-fstring = "~1.3"
flake8-walrus = "~1.1.0"
flakeheaven = "~2.0.0"

isort = "~5.10.1"

pep8-naming = "~0.13.0"

pycln = "~2.0.4"

yapf = "~0.32.0"

RASERAL

Why do people like Ruff?

1. Performant: 10-1000x faster than
existing Python linters

2. Unified: replace dozens of tools
with a single interface

3. Automated: a linter with code
transformation capabilities

RASERAL

Why do people like Ruff?

1. Performant: 10-1000x faster than
existing Python linters

2. Unified: replace dozens of tools
with a single interface

3. Automated: a linter with code
transformation capabilities

o 382 less

-—-- a/examples/assets_smoke_test/assets_smoke_test/pure_python_assets.py
+++ b/examples/assets_smoke_test/assets_smoke_test/pure_python_assets.py
@@ _195 +l;9 @@
+from typing import TYPE_CHECKING
+

from dagster +import SourceAsset, TableSchema, asset

+

+if TYPE_CHECKING:
F from pandas import DataFrame

raw_country_populations = SourceAsset(
"raw_country_populations",
@@ -19,7 +23,7 @@

@asset

+def country_populations(raw_country_populations) -> '"DataFrame":
country_populations = raw_country_populations.copy()
country_populations["change"] = (
country_populations["change'"]

@@ -32,13 +36,13 @@ def country_populations(raw_country_populations) -> DataFrame:

RASERAL

Why do people like Ruff?

1. Performant: 10-1000x faster than
existing Python linters

2. Unified: replace dozens of tools
with a single interface

3. Automated: a linter with code
transformation capabilities

RASERAL

Why do people like Ruff?

1. Performant: 10-1000x faster than
existing Python linters

2. Unified: replace dozens of tools
with a single interface

3. Automated: a linter with code
transformation capabilities

4. Adoptable: drop-in replacement
for existing tools

RASERAL

Why do people like Ruff?

1. Performant: 10-1000x faster than
existing Python linters

2. Unified: replace dozens of tools
with a single interface

3. Automated: a linter with code
transformation capabillities

4. Adoptable: drop-in replacement
for existing tools

RASERAL

How does Ruff work?

 Compiler: Python files in, diagnostics out

* Discover all Python files +

P
* For every file, in parallel: x + 12 — X | + | 12 % / \
* Read from disk
* Lex: turn source code into tokens
xint = 5
* Parse: turn tokens into syntax nodes
* Bind: turn syntax nodes into semantic bindings
 Analyze: run lint rules
* Apply automatic fixes

* Re-run until convergence

* Report diagnostics

RASERAL

What makes Ruff fast?

Rust

* Rust is fast, but writing your program in Rust doesn’t guarantee that it will be fast
* Writing performant Rust is its own skillset

Parse once

* Unified tooling means significantly less repeated work

Fearless concurrency

 Embarrassingly parallel compilation model

A constant focus on performance
RASERAL

<{> Code

@ () Implement our own small-inte X +

C @ github.com/astral-sh/ruff/pull/7584

O astral-sh / ruff

() Issues 493 i1 Pull requests 49 () Discussions (») Actions [] Projects 2 @ Security 1 |~ Insights

Implement our own small-integer optimization #/584

xS charliermarsh merged 3 commits into main from charlie/lex (5] last week

L) Conversation 33 -0- Commits 3 [F} Checks 16 Files changed 40

-

charliermarsh commented 2 weeks ago - edited ~ Member = °°°

Summary

This is a follow-up to #7469 that attempts to achieve similar gains, but without introducing malachite. Instead, this PR
removes the BigInt type altogether, instead opting for a simple enum that allows us to store small integers directly and only
allocate for values greater than i64 :

/// A Python integer literal. Represents both small (fits in an i64°) and large integers. d;
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct Int(Number);

#[derive(Debug, Clone, PartialkEq, Eq, Hash)]

pub enum Number {
/// A "small" number that can be represented as an "i64°.
Small(i64),
/// A "large" number that cannot be represented as an "i64'.
Big(Box<str>),

}

impl std::fmt::Display for Number {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) —> std::fmt::Result {
match self {
Number::Small(value) => write!(f, "{value}"),
Number::Big(value) => write!(f, "{value}"),

Q. Type (/] to search

{63 Settings

Edit <> Code ~

+691 -369 HEEN

Reviewers

g konstin

‘ MichaReiser

@‘ dhruvmanila

Assignees

No one—assign yourself

Labels

Projects

None yet

Milestone

No milestone

Development

Successfully merging this pull request may close
these issues.

None yet

C K K @

&

A_223_31t2_036_.854_115__%0%

“"
——

12" ,;/__> 164

p ¢
'9223372036¢54911580¢" ——== str

C

() Implement our own small-inte X +

@ github.com/astral-sh/ruff/pull/7584

Implement our own small-integer optimization #7584
fo Merged . - . . 0
charliermarsh merged 3 commits into main from charlie/lex [Y” last week

E+ & charliermarsh force-pushed the charlie/lex branch from 60be655 to 55f4eb5 2 weeks ago

{@} codspeed-hqg bot commented 2 weeks ago - edited ~

CodSpeed Performance Report

Merging #7584 will improve performances by 8.58%

Comparing charlie/lex (afeb2c7) with main (65aebf1)

Summary

s 5 improvements
20 untouched benchmarks

Benchmarks breakdown

Benchmark
lexer [numpy/globals.py]
lexer[large/dataset.py]
lexer[unicode/pypinyin.py]
lexer [pydantic/types.py]l

lexer [numpy/ctypeslib.py]

®

main
233.8 us
9.8 ms
621.3 us
41 ms

2 ms

charlie/lex
228.6 us

9 ms

592 us

4 ms

1.9 ms

." github-actions bot commented 2 weeks ago - edited ~

PR Check Results

Change
+2.26%
+8.58%
+4.96%
+3.98%

+2.91%

Compare

What makes Ruff fast?

 Compiler: Python files in, diagnostics out

* Discover all Python files

* For every file, in parallel:
* Read from disk
* Lex: turn source code into tokens
* Parse: turn tokens into syntax nodes
* Bind: turn syntax nodes into semantic bindings
 Analyze: run lint rules
* Apply automatic fixes
* Re-run until convergence

* Report diagnostics

RASERAL

What makes Ruff fast?

 Compiler: Python files in, diagnostics out

* Discover all Python files (~5%)

* For every file, in parallel:
 Read from disk (~5%)
e Lex: turn source code into tokens (~20%)
 Parse: turn tokens into syntax nodes (~30%)
e Bind: turn syntax nodes into semantic bindings (~10%)
 Analyze: run lint rules (~10%)
* Apply automatic fixes
* Re-run until convergence

* Report diagnostics

RASERAL

Ruff could be much faster

 Compiler: Python files in, diagnostics out

* Discover all Python files (~5%)

* For every file, in parallel:
 Read from disk (~5%)
e Lex: turn source code into tokens (~20%)
 Parse: turn tokens into syntax nodes (~30%)
e Bind: turn syntax nodes into semantic bindings (~10%)
 Analyze: run lint rules (~10%)
* Apply automatic fixes
* Re-run until convergence

* Report diagnostics

RASERAL

Rust, Python

HSERAL

NEXT-GEN
PYTHON TOOLING

[PYTEXAS j [OCTOBER 3, 2023 j

