


What is Ruff?
• “An extremely fast Python linter written in Rust”


• Used by… Amazon, Apache Airflow, Databricks, FastAPI, Hugging Face, 
Jupyter, Microsoft, Mozilla, Mypy, Netflix, Pandas, Poetry, Polars, PyTorch, 
Pydantic, Snowflake, SciPy, Zulip, pip, etc.


• The first tool in a toolchain



Ruff is (also) a formatter



What is Ruff?
• “An extremely fast Python linter written in Rust”


• Used by… Amazon, Apache Airflow, Databricks, FastAPI, Hugging Face, 
Jupyter, Microsoft, Mozilla, Mypy, Netflix, Pandas, Poetry, Polars, PyTorch, 
Pydantic, Snowflake, SciPy, Zulip, pip, etc.


• The first tool in a toolchain



• Khan Academy (2015 - 2017)


• Web frontend (JavaScript)


• Web backend (Python)


• Android (Java)


• iOS (Objective-C, Swift)


• Spring Discovery (2018 - 2022)


• Machine learning infrastructure (Python)


• Data infrastructure (Python, Rust)


• Web frontend (TypeScript)


• Ruff (August 2022)


• Astral (March 2023)

Where did Ruff come from?



What is Ruff?



What is Ruff?



Why do people like Ruff?



1. Performant: 10-1000x faster than 
existing Python linters

Why do people like Ruff?



1. Performant: 10-1000x faster than 
existing Python linters

0s 20s 40s 60s

Ruff

Autoflake

Flake8

Pyflakes

Pycodestyle

Pylint

0.29s

6.18s

12.26s

15.79s

46.92s

> 60s

Why do people like Ruff?



1. Performant: 10-1000x faster than 
existing Python linters

Why do people like Ruff?



1. Performant: 10-1000x faster than 
existing Python linters

Why do people like Ruff?



1. Performant: 10-1000x faster than 
existing Python linters


2. Unified: replace dozens of tools 
with a single interface

Why do people like Ruff?



1. Performant: 10-1000x faster than 
existing Python linters


2. Unified: replace dozens of tools 
with a single interface

Why do people like Ruff?



1. Performant: 10-1000x faster than 
existing Python linters


2. Unified: replace dozens of tools 
with a single interface


3. Automated: a linter with code 
transformation capabilities

Why do people like Ruff?



1. Performant: 10-1000x faster than 
existing Python linters


2. Unified: replace dozens of tools 
with a single interface


3. Automated: a linter with code 
transformation capabilities

Why do people like Ruff?



1. Performant: 10-1000x faster than 
existing Python linters


2. Unified: replace dozens of tools 
with a single interface


3. Automated: a linter with code 
transformation capabilities

Why do people like Ruff?



1. Performant: 10-1000x faster than 
existing Python linters


2. Unified: replace dozens of tools 
with a single interface


3. Automated: a linter with code 
transformation capabilities


4. Adoptable: drop-in replacement 
for existing tools

Why do people like Ruff?



1. Performant: 10-1000x faster than 
existing Python linters


2. Unified: replace dozens of tools 
with a single interface


3. Automated: a linter with code 
transformation capabilities


4. Adoptable: drop-in replacement 
for existing tools

Why do people like Ruff?



How does Ruff work?
• Compiler: Python files in, diagnostics out


• Discover all Python files


• For every file, in parallel:


• Read from disk


• Lex: turn source code into tokens


• Parse: turn tokens into syntax nodes


• Bind: turn syntax nodes into semantic bindings


• Analyze: run lint rules


• Apply automatic fixes


• Re-run until convergence


• Report diagnostics



What makes Ruff fast?
• Rust


• Rust is fast, but writing your program in Rust doesn’t guarantee that it will be fast


• Writing performant Rust is its own skillset


• Parse once


• Unified tooling means significantly less repeated work


• Fearless concurrency


• Embarrassingly parallel compilation model


• A constant focus on performance









What makes Ruff fast?
• Compiler: Python files in, diagnostics out


• Discover all Python files


• For every file, in parallel:


• Read from disk


• Lex: turn source code into tokens


• Parse: turn tokens into syntax nodes


• Bind: turn syntax nodes into semantic bindings


• Analyze: run lint rules


• Apply automatic fixes


• Re-run until convergence


• Report diagnostics



What makes Ruff fast?
• Compiler: Python files in, diagnostics out


• Discover all Python files (~5%)


• For every file, in parallel:


• Read from disk (~5%)


• Lex: turn source code into tokens (~20%)


• Parse: turn tokens into syntax nodes (~30%)


• Bind: turn syntax nodes into semantic bindings (~10%)


• Analyze: run lint rules (~10%)


• Apply automatic fixes


• Re-run until convergence


• Report diagnostics



Ruff could be much faster
• Compiler: Python files in, diagnostics out


• Discover all Python files (~5%)


• For every file, in parallel:


• Read from disk (~5%)


• Lex: turn source code into tokens (~20%)


• Parse: turn tokens into syntax nodes (~30%)


• Bind: turn syntax nodes into semantic bindings (~10%)


• Analyze: run lint rules (~10%)


• Apply automatic fixes


• Re-run until convergence


• Report diagnostics



Rust, Python




